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G. C. Berry, T. G. Fox, Adv. Polym. Sci. 1968, 5, 261; D. S. Paerson et al. Macromolecules 1987, 20, 1133.
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Entanglement

® two chains cannot pass through one another by simple translational motion

® these topological interactions lead to the formation of an entanglement network
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The static picture representing entanglements
as “knots” does not reflect the purely dynamic
origin of this phenomenon! 103

rubber
<M, < M,

Temperature (or Timel)

® entanglements are origin of the rubbery state formed by amorphous polymers

elastomeric
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Reptation

® if a chain can becomes entangled with its neighbours, it can also “disentangle”
(if its mobility is high enough due to a sufficiently high temperature or due to a sufficiently long time)

® disentanglement often described by the term “reptation” (evoked by the movement of a snake or reptile)
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Dynamics of an Isolated Chain in a Solvent



Revision: Rubber Elasticity

universal trend of Young’s modulus energetic components of the elastic force
o glassy state . f f
10°- f = Jg+ Jg
Q transition zone
106- €) rubbery state
§
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< M, < Mj fS
O melt
100 0 1 f;
0
Temperature / °C absolute temperature

e rubber elasticity has primarily entropic origins; for ideal rubbers, f = 0!
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Quantification of the Elastic Force

e the entropy of an ideal polymer chain is related to the Gaussian distribution function of R,

S=kInQ=k In(Pde)=C+k InP

before deformation:

entropy change during

. —>
small displacement d r:

force acting in the direction

of this displacement dTr:

® |ike a spring, the chain opposes its displacement

3kR?
S¢=C
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Time-dependent Response of Molten Polymer Chains

® time scale for a certain conformational change strongly dependent on the size of the transformed group

1s
T > Tg

\/\_ 10-°s » \/\

> Tg

® rearrangement on a local scale is rapid
(controlled by the nature of the repeating unit itself)

® full equilibration of the entire polymer chain requires a time that is many orders of magnitude longer
(strongly dependent on global architecture, i.e. molar mass and chain branching)
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Isolated Chains in a Solvent

® the viscoelastic behavior of a very dilute solution will reflect the dynamics of an isolated chain if one
takes into account its interactions with the solvent

e Rouse model: Gaussian subchains of identical length represented by 1 beads and 11 — 1 springs

mean-square end-to-end distance:

n

12

<R > =
m — 1

—

. —>
contraction force along the vector .| — 7 ;:

3kT
/= F(?m - 7)1')

(see exercise 6)
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The Rouse Model for Unentangled Polymers

® balance between elastic deformation and frictional forces between bead i and solvent

3T _, 3T _, 3T, . d7.

o Fi= T+ (Fi = T = QF = T = T =—6—

n

f=

entropic elasticity due to deformation of

the two springs viscous force

® for a whole subchain, 72 such coupled equations which can be solved by “normal mode transformation”;
for a dilute solution containing V., chains per volume, we get m independent equations with solutions:

7 t 6021' 2 G L L Q)Tp
— T — " 1) =N kI
G(?) Nkazle G'(t) = N kTZ Tr ot () =N, pz_} T ot
P= -

e each relaxation time, 7, , describes the time scale over which a different mode of vibration p decays:

pl

R2 2R2
po R (P N SR sy p=12.m
P 24kT 2(m + 1) 67?2 2kT
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Practicability of the Rouse Model

® same behavior in the terminal zone as for the Maxwell model

predicted rheology curves linear poly(butyl acrylate), M, = 5300 g/mol

here: G' ~ G" are
approximately

log(G'), log(G")

proportional to w2

log(wr,)
® polymer melts, particularly at low molecular weights, are well described with the Rouse model

Europ. Polym. J. 2011, 47, 746-751.
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Rouse Modes

e the different modes of vibration exhibit p nodes along the polymer chain

centre-of-mass mode

2p2
T, R~ omK; T TT———. . . . 1%tRouse mode
212
On°pokT Tt~ . . .+ 27 Rouse mode
e . " ™,  3dRouse mode

form>1,p

NN T (N-1)th Rouse mode

® Rouse modes characterise the motion of polymers on different lengths

e the longest relaxation time (Rouse time), 7,, is proportional to M?

increasing
relaxation
time
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Rouse Relaxation

G(t) = N AT Y 7
p=1

e \What is the meaning of m?
e Whatifm — n?

O What |f Tl - OO?

(see exercise 8)

t/t,

® the stress is relaxed according to a simple exponential decrease
e the contribution of faster relaxation times becomes negligible for for 7 > 7,
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Assumptions of the Rouse Model

® the chain is treated by a “bead and spring” model with entropic forces between nearest

neighbours.

e the interaction with other surrounding chains is described by a frictional coefficient &

® hydrodynamic interactions are neglected (for corrections, see the Zimm model)

® the chain must be long

e as long as the molecular weight is smaller than a critical molecular weight, M _,Rouse adequately

describes the dynamics of a chain

o for MW > M _, entanglement must be taken into account
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Limitation of the Rouse Approach

e dilute polymer solutions are not accurately described, because bead-solvent interactions (hydrodynamics
interactions) are not taken into account (see Zimm theory for a more accurate treatment)

Rouse behavior observations
(from dilute solutions)

T| x M? T| x M?3'?

Ok ke 1) a A

D is the diffusion coefficient of D = _ o — D 1M172

the centre of mass of the chain m n M
o o M _

® Rouse model is only valid for short time scales (high frequencies) or for low molecular weights

® it does not take entanglement into account!
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Entanglement
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Constraints on a Chain in the Condensed State

2

3 C_nl?

the volume of a Gaussian chain is: V, = 4rg3 I

6

let’s take typical values: C_=10, [=+v2 A, n=10°, p=1

(example of polystyrene)

4 : 4
thus, the volume V =~ . 10°A° corresponds to amass m, = pV, ~ T 10

8

nM,,

comparison with one chain of PS with n = 10°: Mhain = N
A

polymer chains are strongly interpenetrating each other, in case
of our example, by an average of approximately 10 other chains:

S

8

cm?

_ 106 5
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Static Models of Entanglement

® high degree of penetrations with neighbouring chains restricts the mobility of chains

109_
® Py °
®
o O o
3106_
®
o
® o
103
Temperature (or logt)
cross section of a In analogy to elastomers (E = 3NkT), we assume:

neighbouring chain ., ; .
E, = 3NkT N,: “entanglement” density

® the rubbery state in non-crosslinked amorphous polymers above T; is due entanglement
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Entanglement Network

e a non-crosslinked polymer is considered as a network of subchains of average molar mass M, linked
by entanglement points

Me
D
3\ E. = 3NAT = 3RT -
% h
M, = 3RT-2-
Ee

e M, is an important parameter: only for M > 2M ,, characteristic properties of long polymer chains
(e.g. rubber elasticity) are manifested

o if M < 2M, = M : no entanglement and no rubbery state are obtained (compare to Exercise #4.2)
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Entanglement Molecular Weight and Chain Structure

e M, and the entanglement density, /V,, vary greatly depending on the polymer

density
polymer
g/cm3

PS 1.05
PMMA 1.17
PVC 1.4
PA6 1.08
POM 1.25
PAG6 1.07
PE 0.85
PC 1.2
PET 1.33

g/mol
18'700

9200
5'560
2'480
2'550
1'990
1'390
1'790
1'630

GPa

10.8
3.2
7.6
6.2
7.5
6.1
6.8
2.4
4.2

e empirical relations exist that connect M, C__, and M, (Wu 1990):

mmol/cm3

0.0561
0.127
0.252
0.435

0.49
0.537
0.613
0.725
0.815
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Disentanglement

® if the mobility (temperature) is high enough or time is sufficiently long, chains begin to slide
versus each other

109_
&
E 106_
what is
happening here?
103

Temperature (or logt)

® in the absence of cross-linking, the behavior becomes that of a viscous liquid.
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The Tube Model

® in the tube model (DeGennes, Doi, and Edwards), a given chain is assumed to be trapped in a
virtual tube that represents its interactions with its neighbours

‘.. o \‘ o
i

A
ay
N\ ©
®
S O
& o
s (U
. . . o) Me 0
e the diameter of the tube, d. , corresponds to the length of a chain with mass M_: < df > = v [
0
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The Entanglement Time

. . . n t fmsz
stress relaxation modulus and relaxation times G(t) =N kTZ o LA s
according to the Rouse model: " = P 6m2p2kT
. . . R o
hindered relaxation for long chain segments: T, = 00, for ? > dg

émzRS2 dg‘ fod;‘ 5012 M,
cross-over time from Rouse to reptation behavior: T. = ' — — < )2
P °  6m2kT R*  6m2kTI>  6m2kT \ M,

the entanglement time 7, determines the polymer’s transition from Rouse to repetition behavior

7, is a materials parameter (dependent on M, but independent of the polymer molar mass M)

see also Exercise Sheet 10 289



Relaxation According to the Tube Model

e the chain does not remain blocked in the tube, but leaves the tube after a time 7,

instant tube & chain deformation:
no relaxation, high stress

rapid Rouse-type relaxation
inside the tube until 7 = 7,

rubbery plateau for
T, < I <1y

chain begins to escape from
the tube, when 7 = 7,4 103

log(t)

random conformation fully
restored: relaxation

terminated when 1 > 7
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Molecular Weight Dependence of Reptation

® Rouse model, the diffusion coefficient along the tube is inversely proportional to M: Dj i

[

the diffusion distance i kS
after time 1 (Fick’s law): ¥ = /Dyt M

contour length of the tube: L =—d,
M

c

e - . . L* _én My, , 2 3
® one step diffusion out of the tube after disentanglement time: 73 = Do = 7\ d; = on 1A To
R e

c

e 7, scales with M? (while 7, is independent of M): strong dependence of rubbery behavior on molar mass

“PFL see also Exercise Sheet 10 291



Experimental Evidence

e the diffusion coefficient is a measurable quantity (Neutron scattering)

diffusion coefficient

[ ‘ |

]D X M‘l PE
i S B}
AN Mc
\OD
Q ot :
N
bo o
SH \ D« M
self-diffusion coefficient, D, for M > M : -9} \ -
< I"gz > M 2\
D ~ X —— X M_2 -10 21 é | |
Td M3 4 5
logy M

e When the chain leaves the tube in time 7, its centre of mass moves by the average distance < r, >
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Stress Relaxation and Viscosity

e in the viscous behavior regime (f > 1), the theory of Doi & Edwards predicts:

X | — for M > M, = 2M, 103E

N = )
\_
n | Pa

L #7110 __
e forM < M.=2M, N 9/
N : “

e measurement of 77 as a function of M allows to determine },

e the reptation theory of to DeGennes, Doi, and Edwards are applicable to the non-linear viscoelastic regime
and is thus widely used, e.g. in flow simulations
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Corrections to the Reptation Model

tube length fluctuation constraint release

o ©
© ©
o = s o
\ constraint release
tube fluctuations
® stronger molar mass dependence of diffusion ® |eads to Rouse-like motion of the confining

coefficient, relaxation time, and viscosity tube itself
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Learning Outcome

® isolated chains may be described using the Rouse approach (springs and beads): better agreement
with dynamics in dilute solution when hydrodynamic interactions taken into account (Zimm

model).

® for sufficiently long chains in the condensed state, entanglement effects must be taken into

account. The existence of a rubbery plateau above Tg for non-crosslinked polymers has led to the

idea of the “entanglement network” and M.. For M < 2M_ entanglement effects are not seen.

e for sufficiently long times and/or at sufficiently high temperatures, entanglement can no longer

be considered permanent. General descriptions of viscolesaticity use “tube models” which allow
for disentanglement by reptation. These account for the strong influence of M on the melt

viscosity, diffusion etc.
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