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Universal Molecular Weight Dependence
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Viscosity Diffusion Coefficient

• What is the molecular origin of these universal power laws?
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Entanglement
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• two chains cannot pass through one another by simple transla9onal mo9on 

• these topological interac9ons lead to the forma9on of an entanglement network

• entanglements are origin of the rubbery state formed by amorphous polymers
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Repta9on
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• if a chain can becomes entangled with its neighbours, it can also “disentangle”  
(if its mobility is high enough due to a sufficiently high temperature or due to a sufficiently long Ime)

• disentanglement o{en described by the term “repta9on” (evoked by the movement of a snake or repIle)



Dynamics of an Isolated Chain in a Solvent



Revision: Rubber Elas9city
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• rubber elas9city has primarily entropic origins; for ideal rubbers, !fE = 0
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Quan9fica9on of the Elas9c Force
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• like a spring, the chain opposes its displacement

• the entropy of an ideal polymer chain is related to the Gaussian distribuIon funcIon of Rn

Sc = C − 3kR2
n

2na2

dSc ≈ − 3kRn ⋅ d r
na2

before deforma9on:

entropy change during 
small displacement :d r

Sc = k ln Ω = k ln(P dτ) = C + k ln P

Rn

d r
z

x

y
f c ≈ − 3kTRn

na2

force ac9ng in the direc9on 
of this displacement :d r



Time-dependent Response of Molten Polymer Chains
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• 9me scale for a certain conforma9onal change strongly dependent on the size of the transformed group

• rearrangement on a local scale is rapid 
(controlled by the nature of the repeaIng unit itself) 

• full equilibra9on of the en9re polymer chain requires a 9me that is many orders of magnitude longer 
(strongly dependent on global architecture, i.e. molar mass and chain branching)
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Isolated Chains in a Solvent
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E = σ
ϵ

= 3NkT

• the viscoelasIc behavior of a very dilute soluIon will reflect the dynamics of an isolated chain if one 
takes into account its interacIons with the solvent 

• Rouse model: Gaussian subchains of iden9cal length represented by  beads and  springsm m − 1

mean-square end-to-end distance:

< R2
s > = n

m − 1 l2

contrac9on force along the vector  :r i+1 − r i

f = 3kT
R2n

( r i+1 − r i)

i

i − 1

r i+1r i

i + 1

r i−1

r i+1 − r i

(see exercise 6)



The Rouse Model for Unentangled Polymers
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f = 3kT
R2n

( r i − r i−1) + 3kT
R2n

( r i − r i+1) = 3kT
R2n

(2 r i − r i−1 − r i+1) = − ξ
d r i

dt

• balance between elas9c deforma9on and fric9onal forces between bead  and solventi

entropic elas9city due to deforma9on of 
the two springs viscous force

• for a whole subchain,  such coupled equa9ons which can be solved by “normal mode transforma9on”; 
for a dilute soluIon containing  chains per volume, we get  independent equaIons with soluIons:

m
Nm m

(t) = NmkT
m

∑
p=1

e− t
τp G′ (t) = NmkT

m

∑
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ω2τp2

1 + ω2τp2
G′ ′ (t) = NmkT

m

∑
p=1

ωτp

1 + ω2τp2

f = 3kT
R2n

( r i − r i−1) + 3kT
R2n

( r i − r i+1) = 3kT
R2n

(2 r i − r i−1 − r i+1) = − ξ
d r i

dt

τp = ξR2
s

24kT
sin−2( πp

2(m + 1) ) p = 1,2,...m≈ ξm2R2
s

6π2p2kT
, for m ≫ 1,p

• each relaxa9on 9me,  , describes the 9me scale over which a different mode of vibra9on  decays:τp p

G
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Prac9cability of the Rouse Model
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• polymer melts, par9cularly at low molecular weights, are well described with the Rouse model

• same behavior in the terminal zone as for the Maxwell model
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Rouse Modes
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p = 0

ξm2R2
n = ξmnl2 = ξ0n2l2 ∝ M2

• the different modes of vibra9on exhibit  nodes along the polymer chainp

τp ≈ ξm2R2
n

6π2p2kT

for m ≫ 1,p

• Rouse modes characterise the mo9on of polymers on different lengths 

• the longest relaxa9on 9me (Rouse time), , is propor9onal to τ1 M2

decreasing relaxation time 

increasing 
relaxation 

time



Rouse Relaxa9on
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• the stress is relaxed according to a simple exponen9al decrease 
• the contribu9on of faster relaxa9on 9mes becomes negligible for for t ≥ τ1

• What is the meaning of ? 

• What if ? 

• What if ?

m

m → n

τ1 = ∞

(see exercise 8)



Assump9ons of the Rouse Model
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• the chain is treated by a “bead and spring” model with entropic forces between nearest 
neighbours. 

• the interac9on with other surrounding chains is described by a fric9onal coefficient  

• hydrodynamic interac9ons are neglected (for correc9ons, see the Zimm model) 

• the chain must be long 

• as long as the molecular weight is smaller than a cri9cal molecular weight, ,Rouse adequately 

describes the dynamics of a chain 

• for , entanglement must be taken into account

ξ

Mc

MW > Mc



Limita9on of the Rouse Approach
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D = kt
ξm

= kt
ξ0N

• dilute polymer soluIons are not accurately described, because bead-solvent interacIons (hydrodynamics 
interacIons) are not taken into account (see Zimm theory for a more accurate treatment)

• Rouse model is only valid for short 9me scales (high frequencies) or for low molecular weights 

• it does not take entanglement into account!

Rouse behavior observa9ons 
(from dilute soluIons)

τ1 ∝ M2 τ1 ∝ M3/2

D = kt
ξm

= kt
ξ0n

∝ 1
M D ∝ 1M1/2 is the diffusion coefficient of 

the centre of mass of the chain
D



Entanglement



Constraints on a Chain in the Condensed State
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m = 1.066 ⋅ 10−21 g

• the volume of a Gaussian chain is:

• let’s take typical values:                        ,                       ,                   ,     

• polymer chains are strongly interpenetra9ng each other, in case 
of our example, by an average of approximately 10 other chains:

Vg = 4r3
g r2

g = C∞nl2

6

C∞ = 10 l = 2 Å n = 103 ρ = 1 g
cm3 = 106 g

m3
(example of polystyrene)

• thus, the volume                                    corresponds to a massVg ≈ 4
5 ⋅ 106Å3 mg = ρVg ≈ 4

5 ⋅ 10−18 g

• comparison with one chain of PS with :n = 103 mchain = nM0
2NA

≈ 5
6 ⋅ 10−19 g

mg

mchain
≈ 10



Sta9c Models of Entanglement
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• high degree of penetra9ons with neighbouring chains restricts the mobility of chains

• the rubbery state in non-crosslinked amorphous polymers above Tg is due entanglement

cross sec9on of a 
neighbouring chain
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In analogy to elastomers ( ), we assume:E = 3NkT
Ee = 3NekT : “entanglement” densityNe



Entanglement Network
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• a non-crosslinked polymer is considered as a network of subchains of average molar mass  linked 
by entanglement points

Me

•  is an important parameter: only for , characteris9c proper9es of long polymer chains 
(e.g. rubber elas9city) are manifested 

• if : no entanglement and no rubbery state are obtained (compare to Exercise #4.2)

Me M > 2Me

M < 2Me = Mc

Ee = 3NekT = 3RT
ρ

Me

Me = 3RT
ρ
Ee

Me



Entanglement Molecular Weight and Chain Structure
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•  and the entanglement density,  , vary greatly depending on the polymerMe Ne

• empirical rela9ons exist that connect , , and  (Wu 1990): Me C∞ M0 Me = 3M0C∞
2

polymer
density
g/cm3 g/mol GPa mmol/cm3

PS 1.05 18'700 10.8 0.0561
PMMA 1.17 9'200 8.2 0.127

PVC 1.4 5'560 7.6 0.252
PA6 1.08 2'480 6.2 0.435

POM 1.25 2'550 7.5 0.49
PA66 1.07 1'990 6.1 0.537

PE 0.85 1'390 6.8 0.613
PC 1.2 1'790 2.4 0.725

PET 1.33 1'630 4.2 0.815

Me C∞ Ne

Neff
−1 = Ne

−1 + Nx
−1



ReptaIon



Disentanglement
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• if the mobility (temperature) is high enough or 9me is sufficiently long, chains begin to slide 
versus each other

• in the absence of cross-linking, the behavior becomes that of a viscous liquid.

what is 
happening here?
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The Tube Model
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• in the tube model (DeGennes, Doi, and Edwards), a given chain is assumed to be trapped in a 
virtual tube that represents its interac9ons with its neighbours

• the diameter of the tube,  , corresponds to the length of a chain with mass :de Me < d2
e > = Me

M0
l2

R2
s

d2e
≡ M

Me

de



see also Exercise Sheet 10

The Entanglement Time
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• stress relaxa9on modulus and relaxa9on 9mes 
according to the Rouse model:

G(t) = NmkT
m

∑
p=1

e− t
τp τp ≈ ξm2R2

s

6π2p2kT

τp = ∞, for
R2

s

p
> d2

e• hindered relaxa9on for long chain segments:

• cross-over 9me from Rouse to repta9on behavior: τe = ξm2R2
s

6π2kT
⋅ d4

e
R4s

= ξ0d4
e

6π2kTl2 = ξ0l2

6π2kT ( Me
M0

)2

G(t) = NkT
R2

s

d2e
≡ NekT

• the entanglement 9me  determines the polymer’s transi9on from Rouse to repe99on behavior 

•  is a materials parameter (dependent on , but independent of the polymer molar mass )

τe

τe Me M



Relaxa9on According to the Tube Model
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• the chain does not remain blocked in the tube, but leaves the tube a{er a 9me τd
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see also Exercise Sheet 10

Molecular Weight Dependence of Repta9on
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• Rouse model, the diffusion coefficient along the tube is inversely propor9onal to :M

• one step diffusion out of the tube a{er disentanglement 9me: 

•  scales with  (while  is independent of ): strong dependence of rubbery behavior on molar massτe M3 τe M

DR ∝ 1
M

x = DRt ∝ t
M

the diffusion distance 
a`er Ime  (Fick’s law):t

contour length of the tube: L = M
Me

de

τd ≈ L2

DR
= ξ0n

kT ( M
Me

)2d2
e = 6π2( M

Me
)3τe



Experimental Evidence
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• the diffusion coefficient is a measurable quanIty (Neutron scapering)

• when the chain leaves the tube in 9me  , its centre of mass moves by the average distance τd < rg >

D ≈
< r2

g >
τd

∝ M
M3 ∝ M−2

self-diffusion coefficient,  , for  :D M > Mc

diffusion coefficient

log10 M
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PE



Stress Relaxa9on and Viscosity
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• in the viscous behavior regime ( ), the theory of Doi & Edwards predicts:t ≫ τd

• measurement of  as a func9on of  allows to determine  

• the reptaIon theory of to DeGennes, Doi, and Edwards are applicable to the non-linear viscoelasIc regime 
and is thus widely used, e.g. in flow simulaIons
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Correc9ons to the Repta9on Model
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tube length fluctua9on constraint release

• stronger molar mass dependence of diffusion 
coefficient, relaxa9on 9me, and viscosity

• leads to Rouse-like mo9on of the confining 
tube itself

constraint release

tube fluctuaIons



Learning Outcome
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• isolated chains may be described using the Rouse approach (springs and beads): beuer agreement 
with dynamics in dilute solu9on when hydrodynamic interac9ons taken into account (Zimm 
model). 

• for sufficiently long chains in the condensed state, entanglement effects must be taken into 

account. The existence of a rubbery plateau above  for non-crosslinked polymers has led to the 

idea of the “entanglement network” and . For  entanglement effects are not seen. 

• for sufficiently long 9mes and/or at sufficiently high temperatures, entanglement can no longer 
be considered permanent. General descrip9ons of viscolesa9city use “tube models” which allow 

for disentanglement by repta?on. These account for the strong influence of  on the melt 
viscosity, diffusion etc.

Tg

Me M < 2Me

M


